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Abstract. The system of nonlinear partial differential equations governing the 
transient motion of a cable immersed in a fluid is solved by finite difference 
methods. This problem may be considered a generalization of the classical vibrating 
string problem in the following respects: a) the motion is two dimensional, b) 
large displacements are permitted, c) forces due to the weight of the cable, buoyancy, 
drag and virtual inertia of the medium are included, and d) the properties of the 
cable need not be uniform. The numerical solution of this system of equations 
presents a number of interesting mathematical problems related to: a) the nonlinear 
nature of the equations, b) the determination of a stable numerical procedure, and 
c) the determination of an effective computational method. The solution of this 
problem is of practical significance in the calculation of the transient forces acting 
on mooring and towing lines which are subjected to arbitrarily prescribed motions. 

1. Introduction. This problem arose as a result of an urgent requirement by the 
Navy in connection with a series of nuclear explosion tests which were conducted 
in the Pacific. In preparation for these tests a number of ships were instrumented 
and moored at specified locations from the explosion point. These positions had 
to be maintained intact during the period preceding the explosion. However, the 
bobbing up and down of the ships due to ocean waves could excite transient forces 
in the mooring lines sufficient to break them and thus result in the loss of informa- 
tion from the tests. Several months prior to these tests a request was made to the 
Applied Mathematics Laboratory to calculate the magnitude of the forces acting 
on the mooring lines for waves of varying amplitude and frequency. The two factors 
which made a theoretical solution feasible at this time, whereas it would not have 
been possible several years ago, 'vere: a) the availability of a high-speed computer 
and b) the recent progress made in the understanding and development of nu- 
merical methods for the solution of systems of partial differential equations by 
finite-difference methods. 

Although this problem was solved to satisfy a specific request, it is more useful 
to regard it as the general problem of the two-dimensional motion of a cable or 
rope immersed in a fluid, and it becomes immediately apparent that its solution i.s 
applicable to a wide class of engineering problems involving the motion of cables. 
such as: a) the laying of submarine telegraph cables, b) the towing of a ship or 
other object in water, or c) the snapping of power lines as a result of transient 
forces caused by storms. The problem may be stated abstractly as follows: Given 
the initial conditions (i.e., position and velocity at any time, t0) and boundary 
conditions (positions of end points at all times) of a cable immersed in a fluid, 
determine its subsequent motions. The motions are assumed to take place in two 
dimensions. 
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Forces that are assumed acting on the cable are: a) forced motion of the ex- 
tremities of the cable, b) damping or drag as it moves through the fluid, c) inertial 
reaction of the surrounding fluid, d) weight of the cable, and e) buoyancy. Vari- 
ations in the mass as well as other physical properties of the cable along its length 
are allowed. However, in the present solution it is assumed that the cable is in- 
extensible. The displacements may be large and the motions rapid, provided that 
all significant components of the driving motion lie in a frequency range well 
below the lowest natural frequency of the line for elastic (longitudinal) vibrations. 
In other words, the cable must be sufficiently short (or the velocity of propagation 
of elastic waves sufficiently great) that the line may be considered to be in equilib- 
rium as far as longitudinal waves are concerned. In subsequent work the authors 
have carried out solutions for cables with elastic properties. 

2. Derivation of Equations of Motion. The problem under consideration is a 
generalization of the classical problem of the motion of a vibrating string. We wish 
to deduce the approximate motion of a flexible steel cable without becoming in- 
volved in the explicit computation of the elastic forces which act on the cable. 
However, the formulation of the problem will be more general in several respects, 
namely: 

a) longitudinal as well as transverse motions of the line must be taken into 
consideration. 

b) The, occurrence of large displacements from the equilibrium configuration 
of the line must be permitted. 

c) The extremities of the cable may be at different levels with the cable sagging 
between the positions of support. This requires that the weight of the line be taken 
into account. ulllls, eveII when the line is in static. equilibrium, the tension will not 

be uniform nor will thie line be straight. 
d) Since the cable is submerged, the static forces must include the buoyancy 

of the medium, and the dynamic forces must allow for the virtual inertia of the 
medium. Furthermore, it is necessary to make provision for damping forces due 

to the drag on the line whenever transverse motion is occurring. 
e) Finally, it is (desired to suspend concentrated loads at one or more points 

along the line and to change the (lialneter and linear density of the cable at specified 
points, 

The best approach to the solution of a problem with such general specifications 
appears to be a - numerical mnethod based on finite-difference approximations. 
Inasmuch as we are committing ourselves to the eventual use of differences in both 

the time and space (limensiomus, it will be simpler to introduce the spacewise dis- 

creteness into the original formulation of the problem. We therefore proceed at 

once to the derivation of the equations of motion of a simplified model in which the 

distributed mass of the cable has been replaced by a series of discrete masses mi 
attached to a weightless, inextensible line. This leads to a system of ordinary differ- 

ential equations. It may be shown that, in the limit, the resulting equations pass 
over into the corresponding partial differential equations for the motion of a sub- 

merged cable. 
Figure 1 shows a typical configuration of the system with the cable attached to 

a float at the surface and anchored to the bottom. Also, a heavy load is suspended 
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FIG. 1. -Mooring line. FIG. 2. -Discrete representation. 

from a point near one end of the cable. Other boundary conditions are possible, but 
the equations of motion will be the same in any case. The horizontal and vertical 
coordinates of a point on the line are called x and y, respectively, and the angle 
between the horizontal and the tangent to the line is designated by 0. Figure 2 
illustrates the corresponding discrete model for which the equations will actually 
be derived. The line is divided into segments in such a way that there will always 
be an integral number of them between any points where an abrupt change in some 
parameter occurs. The junctions between the segments are numbered according to 
the subscript index j, which runs from 0 at the anchor to s at the surface. 

Before we can properly invoke Newton's law of motion, it is necessary to con- 
sider the inertial properties of the fluid in which the cable is immersed. We shall 
assume that the kinetic energy imparted to the surrounding medium is independent 
of the component of velocity parallel to the line, whereas it varies as the square of 
the component of velocity at right angles to the line. Thus, when an element of 
the cable is accelerated longitudinally, no hydrodynamic reaction occurs, but when 
the cable is accelerated transversely, it behaves as though it possessed additional 
inertia. For convenience in formulating the equations of motion in Cartesian 
coordinates, the transverse component of acceleration, namely, -xt sin 0 + y cos 0, 
can be further resolved into horizontal and vertical components (to which the 
corresponding components of the accompanying inertial reaction will be propor- 
tional). That is, 

Horizontal component = sin 2 0 _- sin 0 cos 0 

Vertical component =J cos26 - x sin 6 cos 0 

Thus, each component of the hydrodynamic reaction depends on both components 
of acceleration. In general, the reaction force is not parallel to the acceleration 
vector (except when the tangential component is zero), so that it is necessary to 
regard the inertial parameters of the system as tensors rather than simple scalars. 

The differential equations governing the motion of the jth station on the line 
(see Fig. 2) can be written in matrix notation as follows: 

(2.1) ('zi') (2) (;?) 
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where 

Ii - mn + j(ej+ sin2 O+j + ej- sin2 0j4) + mi' 

J= mj + , (ej+i cos2 e,+1 + eA cos2 i) + mr 

Kj = I(e+jq sin Gi+q cos Oj,+ + ei4j sin Ei- cos O.j4) 

andt 

ml = 
2W,+j-1j+I + IFijl,41 

ei+1 = pkjI1j+.j 

Min = mj + pViX 

MiY = mj* + pVjy 

cos Oi+l = (X,+l -Xi)/lp 

sin 0j+j = (yj+l -yj)/1j+. 

Each lumped mass, mj, has been expressed as the average mass of the two seg- 
ments of cable which lie on either side of station j. Also, one-half the equivalent 
transverse mass, ej, of the fluid entrained with each of these segments has been 
included in the inertia tensor. Furthermore, at those stations from which a weight 
is suspended, the effective horizontal and vertical masses, mj' and m7r, of the weight 
are to be added. For simplicity in allowing for virtual inertia, we have assumed 
that any such weights possess a certain degree of symmetry and remain upright 
as the line moves about. 

The force vector, Fj, on the right side of eq. (2.1) can be expressed as the sum 
of internal forces (the tens-ions acting between adjacent mass elements) and what- 
ever external forces are present. Thus, in expanded form the equations of motion 
caII be written 

Ijai - KAjj = Tj+. cos Oj+ - Ti- cos Gi-i + Xi 

-A2)K : + Jpj = Tj+L sin 0j - Tj_ sin Ojq- + Y, 

where Tj+i = tension in segment of line between stations j and j + 1 
Xj = horizontal component of resultant external force at station j 
Y= vertical component of resultant external force at station j. 

There are two sources of external force, namely: 1) gravity, which gives rise to the 
weight minus the buoyancy and acts only in the vertical, and 2) fluid resistance, 
which gives rise to the damping forces. Thus, we write 

Xi = - [Di+, sin Oj+1 + Di-, sin Oi-]i + Xj* 

(2.3) Yj = i[Dj+i cos Oj+j + Di-4 cos 05-1I + Yj*W- -Wj* 

where 

Wi = mig - 4p9(1j+i'j+I + ljoj_) 

Wi*= mj*g - pgV;* 

t See Appendix for definitions of the parameters which appear in the formulas. 
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and D+, = drag on segment of line between stations j and j + 1 
X -* horizontal component of damping force on weight at station j 
Y = vertical component of damping force on weight at station j. 

Again, in order to get the best approximation to the continuous case, the net effect 
of the drag at station j has been expressed as one-half of each component of the 
drag on the segments which lie on either side of this station. The buoyant force of 
the displaced fluid has been treated likewise. 

We have assumed that the drag, Di+, , on a segment of the line acts in a direction 
at right angles to the line. This is a good approximation whenever the velocity is 
high, enough to produce significant forces, since at all but the lowest Reynolds 
numbers the tangential component of the hydrodynamic force is very small com- 
pared to the normal component. Furthermore, we assume that the drag is pro- 
portional to the square of the component of relative velocity normal to the line: 

(2.4) Dj+= = -fI+qj+1 I qj+I 

where 

ft,+- 2 iC+1Ij* + 

qjj+ = - -[(tj1 -c) + (?t - c)] sin aj+j + l [9j+1 + 9j] cos j+i. 
The positive normal to the line has been arbitrarily taken to be directed upward 
when B equals zero. The use of the minus sign and the introduction of the absolute 
value of one of the velocity factors ensures that the drag will always be opposed 
to the direction of qi+1 and thus act as a dissipative force to remove energy from 
the system. Since the velocities of the two endpoints of each segment will, in general, 
differ slightly, their mean value (which for a straight line segment is exactly equal 
to the velocity of the midpoint) is taken as a representative value in the definition 
of qj+l . In addition, the definition allows for the presence of a uniform horizontal 
current, c, to incorporate the ability to treat towing lines as well as mooring lines 
(or mooring lines subjected to ocean currents). 

In addition to the drag on the line itself, there will also be resistance to the 
motion of any concentrated loads which may be suspended from the line. These 
additional damping forces will vary with the velocity but will not, in general, be 
directed exactly opposite to the motion of each weight. However, on account of the 
assumed orientation and symmetry of any such weights, the resistance force will 
be parallel to the velocity vector whenever the relative motion is either purely 
horizontal or purely vertical. Accordingly, the two components of resistance may 
be written 

iri = -fjUA(j - c) 

(2.5) yj* = -fj Yujiy 

where 

fJX = 2pcjXSx 
- = ipCjYSjY 

Ui = [(?,j- C)2 + qj2I' 
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Up to this point an explicit formula has been given for the evaluation of every 
term in the equations of motion (2.2) with the exception of the tensions. To de- 
termine these we must invoke the inextensibility condition which was assumed 
at the outset. This takes the form of a constraint on the motion of the line. It re- 
quires that the separation between adjacent stations must not change with time. 
Thus, we write 

(2.6) (xj -_xj_1)2 + (yj - yj_1)2 =1_ = const. 

This holds for each segment of the line, and we require that the corresponding 
set of tensions, Tj-, , take on values such that the resulting solution of the equations 
of motion will be consistent with eq. (2.6). Because of the implicit nature of this 
condition, we are led to a system of algebraic equations for the determination of 
the proper tensions. At the extremities of the line (j = 0 andj _ s) xj and yj must 
be obtained from the boundary conditions, namely: 

x o xo(t), yo = yO(t) 
(2.7) 

X= = x,(t), YS = Ys(t)- 

These are given as functions of time, and permit the introduction of any desired 
types of driving motions. 

Finally, to (complete the formulation of the problem a set of initial conditions 
must be given for each station on the line. Since the equations of motion are of 
the second order, it is necessary to specify both the coordinates and the velocities 
at t = 0. That is, 

Xj(0) = 0, yA(O) = y,? (j = 1, 2, * -1) 
(2.8) 0 (0) - 0j p,(O) ? ' (j 1, 2, 1.) 

where the superscript index "O0" is used to designate a value at the origin in time. 

3. Solution of Equations by Finite Differences. 

A. GENERAL DjEsctRurnioN OF COMPUTATIONAL PROCEDURE. The equations 
governing the motion of a cable, as derived in the last section, are summarized 
here. The basic equations of motion, (2.2), are repeated for convenience, 

Ijxj-, K& = Tj+1 cos 0j+ T- Tj5. cos 8j-4 + Xi 

(j= 1,2,..- -1), 
(2.2) 

-Kj5j + Jjgj = Tj+5, sin 6j+1 - Tj- sin O,-j + Y, 

(j= 1, 2, s- 1), 

where 
a) s is the number of segments into which the cable is divided, 
b) I,, Kj, Ji are given in eq. (2.1) and are functions of the physical properties 

of the cable and of position only, 
c) Xj, Y, are given by eqs. (2.3), (2.4), and (2.5) and are functions of the 

physical properties of the cable and of position and velocity. 
In addition, the motion is governed by the condition of inextensibility of the cable, 



TRANSIENT MOTION OF SUBMERGED CABLES 33 

eq. (2.6), namely, 

(2.6) (xj-_x,_)2 + (yj- = 12 = const. (j = 1, 2, s). 

The differentiated (with respect to time) forms of this relation, 

(3.1) (x, - xj) (?j - ?j~-) + (ij - Yj-1) (;j -0l-) ? 

(j = 1 22,...s) , 

(xj - xj-1) tj - tij) + (Yj - yjj-1) (Y - j-1) 

+ (Gj - j1)2 + (j- Yj_1)2 = 0 (j = 1, 2, s)y 

are also used in the computation. 
For numerical solution by finite-difference methods the following finite-difference 

equivalents are used, 
n+i n n+i 

(3.3) n+1 = Xi 
, 

Bi 
Y- 

_ y n (j= 1 2 * s -1), 
i 

At~n- 
i 

At 

7n+1 - 2x7 + xn- n+ 2yjn + y71 

(3.4) xi(At)2 ' 
j 

-Yj (A) 

(j =1 2 ...s-1). 

It is assumed that the boundary and initial conditions are known. These are given 
in eqs. (2.7) and (2.8), respectively. The system of equations summarized above, 
consisting of eqs. (2.2), (2.6), (2.7), (2.8), (3.1), (3.2), (3.3), (3.4) with the 
auxiliary equations (2.1), (2.3), (2.4), (2.5), completely describe the motion of 
the cable. 

The computational procedure, as developed in detail in the remainder of this 
section, consists of an algorithm to determine the values xi +', y7 ', 4 , p7 1 
(at time t = t n+ = tn + At and tn++ = tn + 'At) from known values xj', yj', 
x- pA y,4-(at time t = tn and tna). It is convenient to divide this algorithm in 
two phases. The first phase involves the determination of a tentative (but con- 
sistent) set of tensions for all segments, and numerical integration of the equations 
of motion to predict the coordinates one step ahead; the second phase involves the 
evaluation of small discrepancies in the constraint equations from which a set of 
first-order corrections to the tensions can be obtained, and integration of the equa- 
tions a second time to obtain accurate values of the coordinates. 

Phase 1. Using eqs. (2.2) and (3.2), (3s - 2 equations), we compute the (3s - 2) 
unknown variables ,5n, jn (j = 1, 2, ... s - 1) and T7n (j = 1, 2, s). 
We now use eqs. (3.3) and (3.4), (4s - 4 equations); to compute the (4s- 4) 
variables at the next time step, x7n+, yw+', k+', y7 +l (j = 1, 2 ... s - 1). These 
are considered to be only tentative values (denoted in subsequent text by use of 
the tilde). 

Phase 2. To obtain improved values of the tensions T>I (j = 1, 2, ... s) 
and the quantities x n .j'n xn+l, Yn+, , t +, x 4y (a total of (7s - 6) quantities) 
we use the system of equations (2.2), (2.6) and (3.3), (3.4), consisting of (7s - 6) 
equations. However, since eqs. (2.6) are not linear but quadratic in the unknowns 
xi and yj, an explicit solution is impractical to obtain. For this reason a computa- 
tion algorithm based on the Newton-Raphson method of successive approximations 
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is developed. A detailed discussion of the computational procedure used in this 
problem is given in the sections which follow. 

B. DETERMINATION OF TENTATIVE VALUES OF TEN;SIONS. The system of equa- 
tions (2.2) may be regarded as a set of (2s - 2) linear equations in the variables 
a, and gi (accelerations) and may be solved directly for these variables. If we 
designate 

Li = (At)2 I,/(IJ, - KV2) 

Mi = (At)2 J,/1(IJj-j K) 

Nj = (At)2 Kl(IjJ, - K ), 

then the equations of motion (2.2) can be reduced to: 

3j = [RjTj+i - PjTj, + U,]/(At)2 

9j = [SjTj41 - QjTj, + Vj]/(At)2 

where 
Pi = M, cos e,- + Nj sin Oj- 

Qj = Nj cos Oj,- + Li sin e,4 

Rj = Mj cos ej+q + Nj sin 0jj 

Si = Nj cos Es+* + L, sin G,+j 

Uj = Mj Xj + Nj Yj 

Vj = Nj Xj + Li Yj. 

We observe that eq. (3.2) involves positions, velocities, and accelerations. As is 
often the case with finite-difference procedures, it proves to be convenient to com- 
pute positions and accelerations at the mesh points while velocities are found at 
the midpoints in time. For this reason we shall use a modified form obtained by 
evaluating eq. (3.2) at t = ts and at t = t"'-, and then adding the two results 
together, namely, 

(Xs - 4-l) (2jf - 3LI) + (yj, - y7-I) (Wt - 9s-) 

(3.6) + (xr1 4f1 ) (xi X,- ) + (y - ye 
- 1) (Y;s1 Yj-1 

2(t)-2 [(X; X*-x1) - (X4- - x1 )12 

+ 2(&tr)-2 [(y - yr1) - (y7-n - 
l Yf,.)]2 = 0, 

in which we have used the approximations, 

- ?7Xw1)~ + (Xi - 71 _ -1)2 2(4' - 

-tn t 2-. + (Gt ._1 )2 2(y; - 

t 2[(y; - y71)/At (y'-i - yel )/i-2 

Note that eqs. (3.6) are linear in the accelerations. Likewise, eqs. (3.5) are linear 
in the tensions. Consequently, when these latter expressions are substituted for the 
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acceleration components in the constraint equations (3.6), we obtain a set of condi- 
tions which are linear in the tensions, namely, 

Ej_ t7.1 - F71 ,l - + GW-I 1Pj+1 
+En-1 Tn-1 Fn-1 Tn-1 + n-1 n-1 n n-1 + E3I7 T7jI -1 F j_ Tj- + Gj_ Tj+I + Hjq + Hj_1 

+ 2[(xj, x-1 ) - (x4-i - x7-1)]2 

+ 2[(yj 
_ yjn1) 

- (Yr1 - yfl.1)]2 =0 

where 

E7-j = (xjn - X4_1)PI + (yn_ - y,-i )Q7-I 

Ft' 1 = (xjn X-4-) (Pjn + R,) + (Yjn - Yn-,) (Qj + S>1) 
Gn = (Xjn _ xn 1) R n + (yjn -yn>1) Sj 

H I = (X!n - X4' ) (U3n - U>,) + (yTn - YJ-1) (Vj, - V, 1). 

Now assume that the solution is correct up to t = tn. Then all quantities in (3.7) 
can be evaluated at once except for V_ ls7.. and l +J. The tentative values of 
the tensions-signified by the tildes-are determined by the following system of 
equations: 

-Fo.E Go.5 G To.s ( 0.5 

(3.8) |E -F2.s G2. I | |= 

E?. 1. 1.5 F-..5 G5.s I Tn -ws-l.5 

E 5 -F -F_ 5 Gs?_o s '-5 .5 

where 
n n-1 n-1 n-1 ~~n- n- n1 n1 n 

PjH = E~J_' TJ_ - Fj~ Tj + G;c' T>'. + H725' + H>_ 

+ 2[(Xj~ -i x) - (X>-, - X;U?,)]2 + 2[(y3Th - y>-') - (y> -_) 

In general, we can write (for j = 1, 2, *** s) 

(3.9) E`1 Tin_ - TF>1 1_- + Gi. T+ + HI& = 0 

with the conditions: Eo'.6 = G'i = 0 for all n. Also, p0n , QO", Ro" , So", and Ps", 
Q8h, Rh, Ssi = 0Ofor allnn; and 

Uoth = ( t)2iot : and UT= = (At)Gxi for all n, 

Von = (At)2#0on and Vn = (At)2y,' for all n. 

The matrix of coefficients of the system of equations is a triple diagonal one, and 
it can be easily reduced to a single linear equation by elimination. Thus, we solve 
eq. (3.9) for il+ . 

(3.10) Pjn+I = FJ1 - 
- E 
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Now we express each tension as a linear function of T 5 (the tension in the firt 
segment) as follows: 

(3.11) 1i+ = a7+ i ts + ,7+j 

and we arrive at the following recursion formulas for a'+ and ft' namely, 

(3.12) aJ-+ = (F7... am-EL a7J)/G7_1 
i,*= (F7op. iXn* - E7on_* Bin -t_)G_ 

with the conditions 

aon = 1, awos = 0 for all n, 

Dots = 0, n 
= 0 for all n. 

Starting with j = 1, we evaluate a7+1 and B+* recursively up to j s - 1. We 
then find RT from the last equation of the system. 

(3.13) 0.= (Fn(F '- E,_,8?-as- 

C. COMPUTATION OF TENTATIVE COORDINATES. In order to solve eqs. (3.5) 
numerically, we replace x," and g by their simplest central-difference approxima- 
tions, eq. (3.4), namely, 

Xj = (Xi - _ 
n 

+ X>-')/(At)2 

(3.14) i= (I'- 2y7 + y7')/(At) 

Now we solve for x' +' and ya +1, considering these as tentative values subject to a 
slight modification in order to satisfy a system of constraints. Thus we write 

.,) +1 = 2xrj - - X Pj'ilf7- + R ,nest + Un 
(n+- = 2 n _ yn-- _ Qj,'i7- + Sq1u7+* + V7. 

The quantities Pj), Qj, R j SAn U7n and V; are the same as were used to set 
up the coefficient matrix for the tensions, and the values for V _ and Oti+* are 
obtained from (3.11). 

D. DETERMINATION OF IMPROVED VALUES OF TENSIONs. Next, we determine 
the set of corrections ST' _ to be applied to the tensions TiL in order that the 
values of x,+' and yn1+1 should also satisfy the inextensibility condition (2.6). For 
this purpose we define the function 

(3.16) Wx'+1 1[(X^+i _ Xf+l)2 + (yn+l _ yn+1)2 _ 12l 

which measures the discrepancy in the distance between the extrapolated positions 
of pairs of adjacent stations. We observe from eqs. (3.15)-with the tildes sup- 
pressed-that x} +' and yn +1 are functions of the tensions. Consequently, Q7.2 + may 
also be expressed as a function of the tensions. This enables us to write the 
system of constraints to which the tensions are subject as follows: 

(3.17) n+1 = 7+4l {Ted, To_*, T n+1} = 0 (j = 1, 2, ... s) 

since f1n+ vanishes when thie inextensibility condition is obeyed- 
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Now let 

(3.18) T7+1 = 1n+? + 5T7+1, 

and expand J01 in a Taylor series about the point l T,, 1jL_ T'+11. Thus, we 
obtain 

Un+l f n+l1~ af+* n~+ 
j-t= (- + S 5T I1 + ,__ i- 

n+1 

+ 'll- 5T7+1 + higher order terms, 

where 

f2n-l -Qin{,lt Tn j 
T 

T n. 

1[( xn +1 - Xln+,)2 + ( - n+_n+1)2 - 

Provided that the tentative values 1_iL are sufficiently close to the correct values 
T_*, we may neglect the higher order terms in the expansion (3.19), and thereby 
obtain a system of s linear equations for the differential corrections 6T7,_. These 
equations have the same form as the previous system (3.8) for determining I'7q, 
namely, 

~_ pn^+l 0n8+F 1 r71+ 

(3.20) AWP26 -PW. G2. | T2. -Q2.6 ,Rn~l rn~l n+1 pnl ;~ n _ fn+l 

L A.II 1. . 1.5 -PTI-5 1 -fs-1.5 

the general expression being (for j = 1, 2, * * s) 

(3.21) Eh-til 5Tn~ - pn.+* 5T7-l + o~n.ii 5T7'+i + iQ7il = 0 

where 

Sn+1 - ____ =*l ( nl+1 - ~'~l)P7 + (!7 ' - y!77A1)Qf 

}- = -dT _ = (yn+l - )(I + R7..) + (275 __ - l) (Q +Sn ) 

an+1 -= ___ = (xl+1 - xn+1 )R n + ( 0l+1 -T n 

with the conditions: 20.5 = Glj = 0 for all n, and the quantities pJI, .Qf Rj" and 
Sn being the same as in (3.7). 

The system (3.20) can be solved in a manner completely analogous to the. solu- 
tion of the system (3.8). Thus, we write 

(3.22) SV + T= K r5To5 + X7+j 
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and obtain the following recursion formulas: 

=n (fifn+l -n En+1Kn )/in+l 
(3.23) xi+2 = F-X1 i- Eijx.1-f AX q n+iXAt _ flnA -Q+l)/On+l 

with the conditions 

K0. =1, -0.5 = 0 for all n, 

X0= 0, X.o.5= 0 for all n. 

Finally, the last equation of the system enables us to solve for 5To.s5 The result is 

r fln+l n , _ 'n+1 Xn - fr+1E 
(3.24) 5 T0.5 = (- (F +1K n - n+1 n 

(F,-g q'- s-i K8-- 

We can now obtain the corrected values of the tension in each segment. Thus, 

(3.25) _ = l_-, + T 
= '-! + Kp STo.5 + -,-j . 

E. COMPUTATION OF IMPROVED COORDINATES. The corrected values of the 
coordinates are found using e(qs. (3.15)-but this time with the tildes suppressed 

namely: 

4+1 = 2x, - e- P L + RVTT+ + Un 
(3.26) yfll - Xi- i 

+ SJh+ i+ V 
(3.26) .+1 ,>n _,n-1 _ QnT_ L+ Sjn 

n L + Vjn. 

For solution on an automatic computer, it is more convenient to express eqs. (3.26) 
in terms of corrections to be added to the tentative values of the coordinates. That is, 

54n+l = -1P75 T74 + R1n"T7+s 
(3.27) 5y7 +1 = -QPST> + Sja3Tin+.l 

Then the corrected coordinates are given by: 

= x1j + 5n+1 

(3.28) 1n+l nl g1 

F. SPECIAL FORM OF EQUATIONS FOR COMPUTING FIRST TIME STEP. We assume 

that the initial velocity components are zero at each station, and we obtain the 
initial coordinates from the equations for static equilibrium of the line. Since x,? 
and 0, = 0, eq. (3.2) reduces to 

(3.29) (xi - x4.)(xj - X-i-) + (yj - Yi-)(1 -M g-1) = 0 

and, on substituting the expressions (3.5), we find that the tensions are subject 
to the constraint 

4(3.30) E:1 I - Foi-I P5_- + G?-i 15+1, + H:_- = 0. 

Comparing this with eq. (3.9), we see that 

(3.31) ?_0= (j = 1, 2, s)- 
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The system of equations (3.8) is then solved in the usual way to get the proper 
initial tensions . 

To obtain tentative values for the coordinates at t = t1, we make use of their 
Taylor series expansions about the point t = t0, namely: 

(3.32) -x, + (At)?,0 + 3(At)2x? + 

j= yj + (At)fjr + 2(At),Yj + 

Taking ?,0 and py = 0, and substituting eqs. (.3.5) for tj? and 9jo, we find 

zj1 = x? + 2 [-P0JT,? + RPP0t+1 + UP] 

(3.33) I = y)' + 1- Qj0I'_ + S + V)3]. 
The corrections to the tensions are then determined by the system of equations 

(3.20) in the usual manner. Finally, the corrections to the coordinates are com- 
puted as follows: 

8x,' - 2 [- P T?_1 + R 0 6T?+,] 

(3.34) = 
j 

[- Q.? &T? + S,0 &T?+2] 

and the corrected coordinates are given by: 
I - Xi = Xj' + 6X 

1 

(3.35) 1 = I + S 

4. Analysis of Numerical Stability. In order to obtain a valid solution of the 
system of partial differential equations governing the generalized motion of a 
cable, it is necessary to insure the stability (in the sense discussed in (2], [3], [4]) 
of the equivalent finite-difference system (2.2), (2.6), (3.3), (:3.4). In this section 
we will derive the criteria for stability of this system of equations. We will also 
show that whereas the system of finite-difference equations (2.2), (2.6), (3.3), (3.4) 
is stable for sufficiently small time intervals At, the system (2.2), (3.2), (3.3), (3.4) 
is always unstable. This characteristic of the latter system has led to the abandon- 
ment of this simpler set of equations in favor of the more difficult nonlinear system 
(2.2), (2.6), (3.3), (3.4). 

In order to determine the stability of a system of finite-difference equations, we 
study the growth of a small disturbance or perturbation. The conditions for sta- 
bility are said to be satisfied if the amplitude of a small disturbance, introduced 
at any time, t, in any of the dependent variables, does not increase exponentially 
with successive time steps. This condition may be stated as follows: 

If 6F(s, t) and 3F(s, t + At) are values of a variation (or perturbation) in any 
of the dependent variables x, y, T in the system, then it is said to be stable provided 
I 6F(s, t + At)/5F(s, t) J _ 1. We introduce perturbations 6x, by, ST in the 
dependent variables x, y, T, respectively. To simplify the stability investigation, 
we shall omit the terms pertaining to the suspended weights as well as all terms 
involving virtual inertia. From eqs. (2.2), (2.6), (3.3), and (3.4) we obtain the 
following variational system of equations: 

mj~tj = Tj& 5 cos 6j+ -Tj_, 6 cos Oj-,. + cos Oj+t STj+, 

-cos Oej- -Tj --[Dj+1 6 sin Oj+, + Dj-i 8 sin Ojt 
+ sin Oj+l 3Dj+? + sin oji_ SDj_], 
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(4.1) mi6gi = Tj+, a sin Oj+ - Tj 6 sin OAs + sin 0j+j 5Tjq 

-sin Oj. 6Tj-. 
+ I[Di+, a cos oj+. + Di...z a cos 

0j-1 
+ cos 0,+- 5Dj+1 + cos 0j-j 6D,..], 

cos Oj+i 6 cos 0j+; + sin Oj+. 6 sin 0j+ = 0, 
where 

Aj.= -2 I~ I 6qi Z+., 

aqi+ = -M(j+ -c) + (j- c)] 6 sin 
0j+j 

+ 
I(yj+j 

+ 4j) 6 cos 0;+j 

- 2 sin 0j+,(6Uj+i + 6?i) + 2 COS 0j+j (4j+l + 64j); 
and where 

6 COS 0j+I = (6xt+-, xj)/lj+l 6 sin 0j+& = (yj+j - yj)/l,+i 

5i n= (6Xn - X )/At, 6af4 = (by l _ ayy V)/At; 
Ax n = (bxn+l - 26x1jn + axj')/(At)2, 69j = (byn+1 - 26y1n + 6y )/(A)2. 

We will assume in this analysis that within a small region in the (8, t) plane the 
coefficients (T7n, cos Oj', Dn, etc.) of the variational functions vary only slightly 
and hence may be treated as constants. We will denote these simply by T, cos 0, 
D, etc., omitting the indices. A solution of the system of equations (4.1) can then 
be obtained in the form 

5Xn = a eioj+anAt 

y jn = b eio3+anAt 

/Tn = Ptj+an,&t 6T j = c e 

where a, b, c are real constants and a complex. Substituting in eq. (4.1), we obtain 
a system of linear homogeneous equations for the quantities a, b and c which has a 
non-trival solution, provided the determinant of the coefficients is identically zero. 
After some algebraic sirnplifieations, the determinant of the coefficients may be 
written in the form 

F-A sin 0 D' + B sin 0 cos 0 

(4.2) -D' + A cos0 F -Bcos0 sinG = 0 

cos 0 sin G 0 
where 

A = f I q [2iy sin,- (l sin 0/At)(1 + cos ,)(1 - -X')] 

B = f I q [2i(* - c) sin -(I cos 0/At)(1 + cos )(1- -1) 

D = iD singj 

F = mlt/(At)2 + 4T sin2Q(3/2) 

and where 
X = ea^' =(-2 + 1)x 

Multiplying the elements of the determinant and simplifying, we obtain 

(4.3) Asin0+Bcos0-F = 0 
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But, 

A sin G + B cos 0 = f I q I [(2i sin 3) p - (1/At)(1 + cos f)(1- 

where 
p = (- c) cos 0 + y sin 0 

i.e., the tangential component of the velocity of the cable (relative to the medium). 
Substituting in equation (4.3), we finally obtain the characteristic equation of the 
variational system (4.1), namely, 

mlX2 + {If q I At [1(1 + cos p3) - ptt(2i sin 0)] 
+ 4T(At)2 sin2(0/2) -2mllX + [ml - f I q I lAt(l + cos f3)] = 0. 

Now, comparing the first and second terms of the coefficient of X, we find that the 
second term is negligibly small provided 2pzt << 1, i.e., the tangential distance 
traversed by the cable in one time step is very small compared with the length of 
the cable segment. Since this is usually the case and, at any rate, can always be 
satisfied by taking the time step sufficiently small, we will omit this term from our 
subsequent analysis. 

For the case of negligible drag, i.e., f = 0, approximately, we obtain from eq. (4.4) 

(4.5) X2 + [4T sin2 (3/2) (At)2/ml - 2]X + 1 = 0. 

In order for the solution to be stable, the conditions I Xi I _ 1 and i X\2 _ 1 must 
both be satisfied. But if Xi is a solution of (4.5), then X2 = 1/X1 is also a solution. 
It follows that the conditions for stability can be satisfied only if I A, i = l/Xi | = 

Xii = 1. Now, let XA = cosy + i sin y, X2 = cos y - i sin y = l/Al; then, 
Xi + X2 = 2 cos y I < 2. Furthermore, from eq. (4.5) we have 

4T sin2(G/2) (At). 
ml 

We thus obtain the inequality 

1 2 - 4T sin2(0/2)(At)2/ml 1 2, 
or 

(4.6) T sin2(f/2)(At)2/ml ? 1. 

This requirement is tantamount to the condition 

At< ml = 1 

i~t- T velocity of transverse wave' 

In the more general case, allowing for finite drag, eq. (4.4) may be reduced to 
(after neglecting the second term of the coefficient of X) 

mlX2 + [2f I q I lat cos2 (3/2) + 4T( At)2 sin2'(/2) - 2mlIX 

+ [ml - 2f I q I liztcos2 (f/2)J = 0. 

This equation is more difficult to analyze. However, it is possible to show that both 
I X1 I < 1 and I X2 i 5 1, provided that we have chosen 
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At < 4 , and 
(4.8) 

At < m 

These conditions (4.8) are both necessary and sufficient to insure stability.t 
We will now show that the replacement of eq. (2.6) by its differentiated form 

(3.2) results in an unstable system; and that, furthermore, the use of any time 
interval At, no matter how small, does not change the unstable character of the 
equations. It will suffice to show that this condition exists in the case when the 
drag is negligible, i.e., f = 0. The variational equation corresponding to eq. (3.2) is, 

(x, - Xj1) (6Uj - 6j,-) + (Xj - Xj-1) (bxj - aXi-l) 

+ 2(ij - l_,i)(51, - 5?j,) + (y- yj-1)(59j-A 5-1) 

+ (j - Vjh-)(5yj - ayj,-) + 2(j - yj-i)(, - 4tj-1) = 0. 

Substituting appropriate values for 6x and By and neglecting terms containing f, 
we find that the determinant equation (4.2) is replaced by 

F 0 cos @ 

(4.9) 0 F sin G = 0. 
(xj- xj~)t + (j - xj-1) (At)2 (yj - yi-i)t + (Vj- yj-)(At)2 0 

+ 2(kj - .t)(i-X')At + 2(Qj - #j_)(1 -X K)At 

Multiplying the elements of the determinant, we obtain 

F cos O[(xj - xj) + (Gj - j_a)(At)2 + 2(Ij - Ij-1)(1 - X-')At 

+ F sin O[(yj - yj-')t + (ji _ j_.)(At)2 + 2(y,- ) Xy-)At] = 0. 

Equating 

cos 0 = (Xj - xj.)/l, sin 0 = (yj -yj_,)/l 

and using the relations (3.1) and (3.2), we obtain in place of eq. (4.10) 

(4.11) Flet - [(j _j_) + (8i _ #,.).21(At)21 = 0. 

In this case the characteristic equation is a quartic, and it is necessary that the 
absolute values of all four roots be ?1 to insure the numerical stability of the 
system. Thus, we must examine the roots of both factors of eq. (4.11), namely, 

(4.12) F = 0 

and 

(4.13) l t- (? -?j_j)2 + (Pj _ #j_1)2I(At)2 = 0. 

It can be shown that eq. (4.12) is equivalent to the criterion (4.6) which can 

t When the terms for the virtual inertia and suspended weights are included in the stabil- 
ity analysis, it is found that the quantity m in eq. (4.8) should be replaced by the expression 
m + m* + e + p(VXsin2O + Vy cos26). 
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be satisfied provided 

At < 4. 

However, the pair of roots associated with the second factor of (4.11) cannot satisfy 
the stability condition for any finite At because eq. (4.13) requires that 

= 
[(X? - 1 + (Pi - 

92,TAW212 

an inherently positive quantity. This conclusion follows as a result of the definition 
t = X - 2 + X?'. If XA is a root of ecluation (4.13), then X4 = 1/X3 is also a root of 
this equation. As before it follows that for stability X3 I 1 and I = |1/X3 1. 
Hence, X31 = 1 4 = 1. Let X3 cosy + i sin y, \4 = cos -i sin y = 1/X3 
then t = 2(cos y - 1), or -4 < : < 0. Thus, to satisfy the stability requirement 
t must lie between 0 and -4, and consequently can never be positive. 

5. Numerical Results. A number of solutions were carried out with the anchor 
end of the line fixed and with the surface end forced to follow the motion of trochoidal 
waves of varying amplitudes and periods. Several typical solutions are reproduced 
here for the information of the reader. In Figures 3 and 4, plots are given of the 
maximum tension attained along the cable as a function of time for wave heights 
of 6 feet and periods of 12.5 seconds and 5 seconds, respectively. The periods of the 
variation in maximum tension correspond to the periods of the forced vibration, 
as expected. The maximum tension, however, increases in magnitude from :33,250 
lbs in the case of waves of 12.5 see period to 49,500 lbs when the period is 5 seconds. 
In Figure 5, the maximum tension attained for wave heights of 9 ft and a period of 
7.5 seconds is plotted. The maximum tension is approximately 60,000 lbs as com- 
pared with 38,500 lbs for the case of 6-ft waves with the same period. 

40,000 i _ _ _ _ 

30,000/ / . 

0 to 20 30 40 SO 
Time in seconds 

FIG. 3. Mooring line oscillations: wave height, 6 feet; period, 12.5 seconds. 
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Fi(C. 4.-M or!ig line oscillations: wave height, 6 feet; period, 5 seconds. 
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Flu. 5.-Mooring line oscillations: wave height, 9 feet; period, 7.5 seconds 

As an ex;perinienst to aid in understanding the effect of the drag on the motion 
of the cable, one case wlas carried out with zero drag (i.e., motion in vacuum). 
A very interesting motion pattern w as obtained which does not possess a periodic 
character. The resulting maximum tension is plotted in Figure 6. 

The programming of the various phases of this problem weas carried out by Mr. 
Thomas M~cFee, of the Applied Mlathematics Laboratory, in a most effective 
manner. The speed and accuracy with which he accomplished this phase of the 
solution were largely responsible for the success in meeting the required time 
schedules. The authors would also like to express their gratitude to Mr. R. T. 

M~cGoldrick, of the Structural 'N'echanics Laboratory, for proposing this problem 
and for a number of helpful discussions; to Dr. R. Bart., Structural Mechanics 
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FIG. 6.-Mooring line oscillations without drag: wave height, 6 feet; period, 7.5 seconds. 

Laboratory, for a number of ideas used in setting up the numerical procedure; to 
Dr. E. H. Kennard, David Taylor Model Basin, and Dr. R. M. Langer, Bureau of 
Ships, for helpful discussions in connection with the definition of the problem; to 
Dr. Daniel Shanks, Applied Mathematics Laboratory, for valuable suggestions; 
and to M~iss Corinne Lundgren, Applied Mathematics Laboratory, for assistance 
in the preparation of the figures. 

Appendix-Notation. 
C7+~ Drag coefficient for segment of cable between stations j and I + 1 
C?%X Resistance coefficient for horizontal motion of suspended prism 

C7Y Resistance coefficient for vertical motion of suspended prism 
c Velocity of uniform horizontal current 
D Drag 
d,+1 Diameter of segment of cable between stations j and I + 1 
ej+* Virtual mass of entrained fluid between stations j and j + I 
F Resultant force 
fD'+ Drag factor for cable- =p2C~jd+ 
Lx Horizontal drag factor for suspended prism = (p/2)C7ZS, 
fY Vertical drag factor for suspended prism-= (p/2)C/YSY 
g Acceleration due to gravity 
I, Component of inertia tensor 
i Imaginary unit 
J, Component of inertia tensor 
j Subscript denoting station number along line 
K, Component of inertia tensor 
k5+q Virtual inertia coefficient for segment of cable between stations j and I + 1 
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bj+i Length of line between stations j and j + 1 
mj Mean mass of segments of cable adjoining station j 
mj* Mass of prism suspended from station j 
m X Effective horizontal mass of suspended prism 
mj y Effective vertical mass of suspended prism 
n Superscript denoting time-step number 
o Superscript denoting initial state (origin in time), or subscript denoting 

anchor end of line 
p Tangential component of velocity of cable (relative to medium) 
q Normal component of velocity of cable (relative to medium) 
S x Projected area of suspended prism along x-axis 
VS, Projected area of suspended prism along y-axis 
s- Subscript denoting surface end of line 
T Tension 
t Time 
At Time-step interval 
u Magnitude of velocity of cable (relative to medium) 
VJ* Volume of prism suspended from station j 
Vx Equivalent volume of horizontal virtual mass of suspended prism 
Viy Equivalent volume of vertical virtual mass of suspended prism 
Wj Mlean net weight of segments of cable adjoining station j 
Wj* Net weight of prism suspended from station j 
X Horizontal component of resultant external force 
Xi* Horizontal component of damping force on suspended prism 
x Horizontal coordinate of cable 
Y Vertical compoiient of resultant external force 
Yi* Vertical component of damping force on suspended prism 
y Vertical cooordinate of cable 
a Damping coefficient of the perturbation functions 
,8 Angular wave number of the perturbation functions 
a The variation of 
8 Angle between horizontal and tangent to cable 
X Eigenvalue (root of characteristic equation) 

ij+I Linear density of segment of cable between stations j and j + 1 
p Density of fluid medium 
orj+ Cross-section area of segment of cable between stations j and j + 1 
* Dot signifies differentiation with respect to time 

Tilde signifies tentative value of a variable 

Applied Mathematics Laboratory 
David Taylor Mlodel Basin 
Washington 7, District of Columbia. 

1. T. S. WALTON & H. POLACHEK, "Calculation of nonlinear transient motion of cables," 
David Taylor MIodel Basin Report 1279, 1959. 

2. G. G. O'BRIEN, M. A. HY.MAN & S. KAPLAN, "A study of the numerical solution of 
partial differential equations," Jn. Math. and Phys., v. 29, 1951, p. 223-251. 

3. P. D. LAX & R. D. RICHTMEYER, "Stability of difference equations," Com. Pure Appl. 
Math., v. 9, 1956, p. 267-293. 

4. G. LUDFORD H. POLACHEK & R. J. SEEGER, "On unsteady flow of compressible viscous 
fluids," Jn. Apple. Phys., v. 24, 1953, P. 490-495. 


